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Abstract

In infectious disease epidemiology the basic reproductive ratio, R0, is defined as the
average number of new infections caused by a single infected individual in a fully suscep-
tible population. Many models describing competition for hosts between non-interacting
pathogen strains in an infinite population lead to the conclusion that selection favors
invasion of new strains if and only if they have higher R0 values than the resident. Here
we demonstrate that this picture fails in finite populations. Using a simple stochastic
SIS model, we show that in general there is no analogous optimization principle. We find
that successive invasions may in some cases lead to strains that infect a smaller fraction
of the host population, and that mutually invasible pathogen strains exist. In the limit
of weak selection we demonstrate that an optimization principle does exist, although it
differs from R0 maximization. For strains with very large R0, we derive an expression for
this local fitness function and use it to establish a lower bound for the error caused by
neglecting stochastic effects. Furthermore, we apply this weak selection limit to investi-
gate the selection dynamics in the presence of a trade-off between the virulence and the
transmission rate of a pathogen.
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1. Introduction

Managing infectious diseases of humans, animals and crops requires predicting their
dynamics – from short-term spread to long-term evolution. Mathematical models pro-
vide a framework for this task (Anderson and May, 1991; Diekmann and Heesterbeek,
2000). The classic modeling approach involves tracking specific compartments of the host
population with a system of differential equations. These compartments generally divide
individuals into different demographic classes (based on, for example, age or exposure)
and different stages of infection (such as susceptible, infected, and recovered) with vari-
ous pathogen strains. Individuals transition between states based on parameters specific
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to the disease, environment, and mixing patterns. Perhaps the most important insight
from such models, when applied deterministically to infinite populations, is the existence
of a critical value of the parameters necessary for a disease to cause an epidemic. This
threshold is generally represented with the basic reproductive ratio, R0, which describes
the expected number of secondary infections caused by a single infected individual in
a fully susceptible population (reviewed in Heffernan et al. (2005)). For a pathogen-
environment-host scenario with R0 < 1, the infection is subcritical and is guaranteed
to die out before infecting a substantial fraction of the population, while for R0 > 1,
an epidemic can occur. In these deterministic models, R0 = 1 often corresponds to a
transcritical bifurcation.

Pathogen populations are genetically diverse due to high mutation rates and large
population sizes. Multiple strains are generally competing for the same hosts. Pathogens
acquire adaptations as they move from one environment or species to another, and are
continually in an evolutionary arms race with their hosts. As well as describing the spread
of a disease, in many traditional infectious disease models R0 is sufficient to describe the
evolutionary trajectory of the disease: the selection gradient is in the direction of higher
R0, and R0 is the quantity that is maximized by the evolutionarily stable strategy (for
example, Anderson and May (1982)).

This strategy of maximizing R0 to determine the evolutionarily optimal pathogen
strategy turns out to have limitations in many systems (Metz et al., 1996, 2008). Vio-
lations of this principle have been observed when the simplest models are extended to
account for biologically-relevant population dynamics, such as particular types of density-
dependent demographic or transmission parameters, frequency-dependent selection, or
host-pathogen co-evolution (reviewed in Dieckmann (2002)). More generally, sufficient
conditions for R0 maximization have been derived for one of the most common epidemi-
ological models (the well-mixed SIR model). These include the absence of genotype-
by-environment interactions, the presence of only a single transmission pathway, and
specific constraints on the density-dependence of mortality (Cortez, 2013). Additionaly,
the option for pathogens to co-infect hosts or displace resident infections within hosts
(“super-infection”) can also result in evolution towards suboptimal R0 (May and Nowak,
1994; Bonhoeffer and Nowak, 1994; Nowak and May, 1994; May and Nowak, 1995). Due
to the convenience of conclusions based on R0, exceptions to the “R0 maximization” rule
remain important to understand. However, most previous work has focused on determin-
istic models in infinite populations, and the generalizability of these conclusions outside
this limit are unknown. In this paper we show that even in the context of the simplest
“SIS” disease model, R0 maximization may fail when we consider finite-sized populations,
and the direction of selection may be substantially different in small populations.

The Susceptible-Infected-Susceptible (SIS) Model (Anderson and May, 1991; Diek-
mann and Heesterbeek, 2000) is one of the simplest mathematical models describing an
infectious process and has been used to describe a variety of phenomena such as commu-
nicable diseases, computer viruses and peer-influenced behaviors. The model classifies
individuals as either susceptible (healthy) or infected at any point in time. Susceptible
individuals can become infected through contact with infected individuals, with a trans-
mission rate β, and once infected, individuals recover at a rate δ. Recovered hosts are
once again susceptible to the infection. Individual pathogens are not explicitly tracked,
but assumed to only survive in living hosts and be transferred through some form of con-
tact. This model ignores the detailed time-course of the disease within a patient (such as
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latent or exposed phases) and any type of long-term immunity. In simplest form, it also
assumes that the population consists of randomly and homogeneously mixing individ-
uals, although extensions to network-based contact patterns are common (for example,
Eames and Keeling (2002); Cator and Van Mieghem (2013)). Despite these limitations,
the small number of parameters of the SIS model (β, δ) means that detailed analysis of
the phase space is possible, which often yields results that can be generalized to more
complex systems.

While deterministic models are by far the most commonly used in epidemiology,
stochastic models are required to answer questions about finite populations and the prob-
ability of an epidemic occurring. Analysis of the stochastic SIS model is complicated by
the fact that the model contains an absorbing state when all individuals are healthy,
which is guaranteed to be reached for all non-zero values of the parameters as time goes
to infinity (Nasell, 1995). As a consequence of this absorbing state, there is no longer a
critical threshold value of R0 such that the infection reaches a non-zero equilibrium level,
since the only true equilibrium is the zero-infection state. The transition is a bit more
subtle and is clear only in the asymptotic limit of large N : for R0 < 1, the disease preva-
lence decays exponentially, with survival time τ = O(log(N)), while for R0 > 1, survival
time grows at least as eN

α
for some α > 0. Also, for large N a long-lived “metastable

state” (or “quasi-stationary state”) is reached with an infected level equivalent to the de-
terministic model (Ovaskainen, 2001; Ganesh et al., 2005; Castellano and Pastor-Satorras,
2010). Various methods have been developed to analyze the quasi-stationary distribution
of the stochastic SIS model, by analyzing the limiting behavior of related processes where
the absorbing state has been eliminated. One recent approach considers a perturbation
to the model to include spontaneous infection of healthy nodes at a rate ε and hence elim-
inates the absorbing state (the ε-SIS model). This model has been solved exactly, and
for certain small values of ε, its threshold and equilibrium behavior approximates that of
the SIS model (Van Mieghem and Cator, 2012). Another method considers a related “re-
turn process”, in which all absorbing states are re-assigned randomly to transient states,
according to an arbitrary “return” distribution. By iteratively finding the equilibrium of
this system and using it as the next return distribution, the equilibrium eventually ap-
proximates the SIS quasi-stationary distribution (Barbour and Pollett, 2010, 2012). For
smaller N , the behavior of the stochastic SIS model is further complicated by the fact
that the average number of secondary infections is no longer described by the expression
for R0 in infinite populations, and is consistently smaller (Ross, 2011).

Here we are interested not only in the initial spread but in the evolution of a pathogen
obeying SIS dynamics. We will consider the potential for competition between strains
with different values of β and δ. In the deterministic, infinite population case, R0 = β/δ,
and evolution towards increasing R0 will tend to increase β and decrease δ when they are
uncorrelated. If they are correlated, as is often considered in studies of the evolution of
virulence, evolution may proceed towards optimal intermediate values (Antia et al., 1994;
Bull, 1994; Lenski and May, 1994; Lipsitch et al., 1996; Levin, 1996; Regoes et al., 2000;
Ganusov et al., 2002; Ganusov and Antia, 2003; Ebert and Bull, 2008). We expect that
evolutionary outcomes for infectious diseases in finite populations may be different, as
important effects have been found in other systems. It is only in finite populations that
neutral drift and the fixation probability become meaningful terms. In evolutionary game
theory (a framework for studying frequency-dependent selection)(Smith, 1982; Weibull,
1997; Hofbauer and Sigmund, 1998; Nowak and Sigmund, 2004), the conditions for a
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strategy to be evolutionarily stable in an infinite population are neither necessary nor
sufficient in a finite population (Nowak et al., 2004). Here we demonstrate that similarly
interesting results are found for infectious disease evolution in finite populations.

2. The SIS model for two diseases

The model we examine is an extension of the stochastic SIS model that describes
the dynamics of two concurrent infections: strain 1, s1, and strain 2, s2. We consider
a constant population of N hosts, where each individual can either be in a susceptible
state, or be infected with one of the two strains. This model is formally described by a
continuous-time birth-death process. The number of individuals infected with the strain
si is given by ni. The number of susceptible individuals is always N −n1−n2. The state
space of this process consists of pairs of integers [n1, n2] such that n1 + n2 ≤ N (Figure
1A).

A susceptible individual becomes infected with strain si (i = 1 or 2) at a rate equal
to the product of βi/N and the number of infected individuals it contacts. The values of
βi will be referred to as the transmission rates. We assume that the population is well-
mixed, i.e., that all individuals have equally weighted contact with all other individuals
at all times. Infected individuals recover from the disease and become susceptible again
with a rate δi, which we refer to as the recovery rates. Equivalently, an individual may
die, and - to keep population size constant - immediately be replaced by a new susceptible
host. Uninfected hosts die at a rate u. Hosts infected with the strain si die at a rate
u+vi, where vi, the virulence, is defined as the increase in the death rate of a host caused
by the presence of the infection. The event of either death (with replacement) or recovery
of an individual infected with the strain si constitutes a turnover event and occurs at the
turnover rate ai = u+ vi + δi. The last assumption we make is that individuals may only
be infected with a single strain at a time, so that neither superinfection nor coinfection
are allowed.

If we define P[n1,n2](t) as the probability that the system is in a state [n1, n2] at time
t, then we can write a system of differential equations (the master equations) describing
the time evolution of this process:

dP[n1,n2](t)

dt
=

[
β1
N

(n1 − 1)P[n1−1,n2](t) +
β2
N

(n2 − 1)P[n1,n2−1](t)

]
(N − n1 − n2 + 1)

+ a1(n1 + 1)P[n1+1,n2](t) + a2(n2 + 1)P[n1,n2+1](t)

−
[(

β1
N
n1 +

β2
N
n2

)
(N − n1 − n2) + a1n1 + a2n2

]
P[n1,n2](t).

(1)

Here we additionally prescribe the function P[n1,n2](t) to be zero outside of the domain
0 ≤ n1 +n2 ≤ N . Equation(1) requires an initial condition, which is discussed in Section
3. Note that by conditioning on either n1 = 0 or n2 = 0, the model reduces to a standard
one-disease stochastic SIS model.

Analogously to the simple SIS model, the state where all individuals are susceptible
(n1 = n2 = 0) is an absorbing state, and since the total number of states is finite, recovery
of the entire population is guaranteed as t→∞. Consequently, the stationary solution of
Eq.(1) is trivial, and different methods are required to understand the important disease
dynamics described by the model.

In particular, we are interested in the following scenario. After the resident infection
s1 has spread among the hosts, a single individual infected with a mutant strain s2
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emerges in the population (see Section 3 for a precise description). Our goal is to decide
whether selection favors the invasion of the mutant strain into the population infected
by the resident strain. To answer this question, let us define the fixation probability
of s2 invading s1 as the probability that strain 1 becomes extinct before strain 2 does.
We will say that invasion of strain 2 into strain 1 is favored by selection if its fixation
probability is greater than that of a neutral mutant. A mutant strain is neutral if its
fixation probability is the same as that of a mutant with parameters identical to those of
the resident (i.e., β2 = β1, a2 = a1). In particular, a neutral mutant of s1 added into a
population containing n individuals infected with s1 has a fixation probability 1/(1 +n).
These definitions follow a standard approach to studying adaptation in finite populations
(for example Crow and Kimura (1970); Proulx and Day (2002); Nowak et al. (2004)).

To anticipate the results of this analysis, consider a population of only two hosts.
One host is infected with strain 1 and the other with strain 2. Since no new infections
can occur while both exist in the population, invasion of strain 2 will be favored by
selection if its average turnover time is greater than the average turnover time of strain 1
(the turnover times are exponentially distributed random variables). This will happen if
a1 > a2. On the other hand, if the population is infinite, the condition for the invasion of
strain 2 to be favored is that R1 < R2, where Ri = βi/ai is the basic reproductive ratio.
Therefore, selection dynamics depend heavily on the population size, with low turnover
rates being more important for smaller populations. One of the goals of this paper is to
describe the behavior for population sizes between the two extreme cases of N = 2 and
N =∞.

The rest of this paper is organized as follows. In Section 3, we precisely define the
initial condition for the competition between two strains. In Section 4 we proceed to
calculate the fixation probability of a newly introduced strain, and derive a closed form
expression in the limit of large values of the basic reproductive ratios. We use these results
in Section 5 to analyze which strains are favored to invade different resident strains, and
we compare the resulting behavior with known results for infection dynamics in infinite
populations. In Section 6, we analyze the weak selection limit to quantify how population
size changes the direction of selection and to identify population sizes at which stochastic
effects become important. We also use this limit to study the selection dynamics when
there is a trade-off between the virulence and the transmission rate.

3. Quasi-stationary distribution as a description of the initial epidemic

We now describe in detail the initial conditions for the invasion of a new disease strain
into a population infected with a resident strain at an endemic equilibrium. There are
two components to the initial condition: a precise description of the state of the resident
infection at this “equilibrium,” and a procedure for the introduction of a mutant strain.

Prior to the introduction of the mutant (strain 2), the dynamics of the resident
infection (strain 1) are described by the solution of Eq.(1) conditioned on n2 = 0
(the simple stochastic SIS model). Let us denote the resulting probability distribution
Pn1(t; a1, β1, N). The quasi-stationary distribution for this process is defined by condi-
tioning Pn1(t; a1, β1, N) to non-extinction:

Qn1(R1, N) = lim
t→∞

Pn1(t; a1, β1, N)

1− P0(t; a1, β1, N)
, n1 ∈ {1, . . . , N} . (2)
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Figure 1: State space and initial conditions for the two-disease stochastic SIS model. A) Each dot
represents a possible state of the two infections in a population. Transitions can occur only between
neighboring states. Reaching either the lower or left boundary of this state space means that one of
the disease strains has gone extinct (and so the remaining strain is said to have “fixed”). The red dots
represent the state space in the case of very large basic reproductive ratios (described in Section 4).
Restriction of the original Markov process to this state space reduces it to a process on a finite one-
dimensional lattice with two absorbing states. B) The initial condition (Eq.(3)) describes the number of
hosts infected with the resident strain (n1) at the instant the mutant strain (s2) appears. The mutant
strain is introduced when a mutation arises in an infected host. All graphs use N = 10. Distributions
for several values of the basic reproductive ratio of the resident strain (R1) are shown. As R1 →∞, the
distribution becomes non-zero only for n1 = N − 1.

We assume that strain 1 is in this quasi-stationary state before strain 2 appears. The
existence of this limit, and its independence of the initial condition of Pn1(t; a1, β1, N),
was proved in previous work (Mandl, 1960). Although a closed form expression for the
parameter dependence of Eq.(2) is not known, many approximations have been derived
(Kryscio and Lefévre, 1989; N̊asell, 2001; Ovaskainen, 2001). Since we could use either
a1 or β1 to reparametrize time in Eq.(1), the quasi-stationary distribution depends only
on R1.

Throughout the paper, we will refer to the quantities Ri = βi/ai as basic reproductive
ratios, although, strictly speaking, they are basic reproductive ratios in infinite popula-
tions. Basic reproductive ratios in finite populations calculated as the average number of
secondary infections differ slightly from the quantities Ri (Ross, 2011).

Even though the quasi-stationary distribution exists for any R1, we will mostly restrict
our analysis to residents with R1 > 1. Roughly speaking, this ensures that the infection
can affect a non-negligible fraction of the population, although the distinction is not as
clear as in infinite populations.

We now address the issue of how a mutant is introduced into an infected popula-
tion. We consider the following scenario: The resident infection s1 has reached quasi-
stationarity in a population of N individuals, at which point a pathogen in one of the
infected individuals undergoes a mutation into a new strain s2. This corresponds to the
convention used in evolutionary invasion analysis. In many cases, a weak selection limit
is assumed to hold, and the parameters of s2 differ only infinitesimally from those of s1.

Under this scenario, after the mutation occurs, the population consists of N hosts
in which a single individual is infected with the mutant strain s2 and n1 individuals
are infected with the resident strain s1. The variable n1 is random with the probability
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distribution
ρn1(R1, N) ≡ Qn1+1(R1, N), n1 ∈ {0, . . . , N − 1} . (3)

Figure 1B shows several examples of this distribution assuming N = 10. Eq.(1)
describes a linear system (dp/dt = Ap where the elements of p correspond to P[n1,n2])
that, in the case of only one disease present, contains one absorbing and N transient
states. The quasi-stationary distribution is calculated numerically by evaluating the
normalized right eigenvector corresponding to the largest eigenvalue of the matrix A′,
which is obtained from the transition rate matrix (A) by removing the row and the
column corresponding to the absorbing state (Keeling and Ross, 2008).

Although we have chosen a precise definition of the initial condition, there are other
alternative definitions that are equally biologically feasible. For example, strain 2 could
appear by immigration and a subsequent increase in the total host population size, as
opposed to by mutation. This scenario is considered in Section 7.1. Importantly, our
results do not change qualitatively with this alternative definition. Many of the conse-
quences of disease competition in finite populations can be inferred from the behavior of
strains with very large R0, and this behavior is completely independent of the choice of
the initial condition (detailed in §7.1).

4. Calculating the fixation probability

The quantity we are interested in is the fixation probability F (a2, β2; a1, β1, N) of a
mutant. Let Fn1(a2, β2; a1, β1, N) denote the conditional fixation probability given that
the mutant strain invades a population containing exactly n1 individuals infected with
the resident strain. By the law of total probability, the unconditional fixation probability
is given by

F (a2, β2; a1, β1, N) =
N−1∑
n1=0

ρn1 (R1, N)Fn1(a2, β2; a1, β1, N). (4)

The most straightforward way to calculate the conditional fixation probabilities is
to consider the embedded Markov chain corresponding to the continuous-time Markov
process defined by Eq.(1). This Markov chain has the same state space as the original
process, and the transition probabilities between these states are given by

P ([n1, n2]→ [n1 + 1, n2]) =
β1n1

N−n1−n2

N

a1n1 + a2n2 + (β1n1 + β2n2)
N−n1−n2

N

,

P([n1, n2]→ [n1 − 1, n2]) =
a1n1

a1n1 + a2n2 + (β1n1 + β2n2)
N−n1−n2

N

,

P([n1, n2]→ [n1, n2 + 1]) =
β2n2

N−n1−n2

N

a1n1 + a2n2 + (β1n1 + β2n2)
N−n1−n2

N

,

P([n1, n2]→ [n1, n2 − 1]) =
a2n2

a1n1 + a2n2 + (β1n1 + β2n2)
N−n1−n2

N

.

(5)

First, let us adjust this Markov chain by changing the state space (see Figure 1A for
the graphical representation). We exclude the state [0, 0], and we identify all states with
n2 = 0 as one absorbing state, and all states with n1 = 0 as another one. This reduction
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in states does not change the outcome of the process since once a strain becomes extinct,
it cannot reappear in the population. The next step is to enumerate all the possible states
[n1, n2] together with these two absorbing states. Constructing the matrix Q and a vector
b such that Qi,j is the transition probability from a transient state i to a transient state j,
and bi is the transition probability from a transient state i to the absorbing state n1 = 0,
we can calculate the vector f of probabilities of absorption in the state n1 = 0 starting
in a state i by solving the linear equation (see Kemeny and Snell (1976))

(I−Q)f = b, (6)

where I is the identity matrix.
The conditional fixation probability Fn1(a2, β2; a1, β1, N) is equal to the element of

f that corresponds to the state [n1, 1]. Solving Eq.(6) requires the inversion of an
(N2 − N)/2-dimensional matrix and, even for moderate N , the resulting formulas are
too complicated to be of any use. Therefore, what remains is to start with certain strain
parameters, and numerically solve the Eq.(6). Since the quasi-stationary distribution
can be calculated numerically as well, we can also obtain the exact fixation probability
F (a2, β2; a1, β1, N) for given parameters.

For very large Ri, we can obtain a closed form expression for the fixation probability
given by

lim
Ri→∞

F (a2, β2; a1, β1, N) =
(N − 1)

(
β1

β2

a2
a1
− 1
)2

N − 1 + a2
a1
−N β1

β2

a2
a1

+
(
β1

β2

a2
a1

)N (
1−N β2

β1
+ a2

a1
(N − 1)

) . (7)

Derivation of this equation is given in Appendix A. It assumes that when taking the limit
Ri →∞, the ratios a2/a1 and β2/β1 are kept constant.

Although strains with very large basic reproductive ratios are not necessarily realistic,
they demonstrate the effects of finite populations and will be used to present analytic
results throughout the paper. There are several important properties of this limit that
simplify the analysis. For a single infection in the limit Ri → ∞, the quasi-stationary
distribution is non-zero only for ni = N . The mean time to extinction from quasi-
stationarity then follows from a standard result for the SIS model (Ovaskainen, 2001;
Kryscio and Lefévre, 1989)

τ =
1

ai

(N − 1)!

NN
RN−1
i

(
1 +O

(
1

Ri

))
. (8)

Therefore, strains with very large basic reproductive ratio exist in their quasi-stationary
state essentially forever, resembling the behavior of infinite populations. Once a second
infection is introduced, every individual in the population is always infected with one of
the strains. However, the relative prevalence of the two strains can change over time.
Even when each individual is infected, the probability of recovery is non-zero for every
individual, but, with probability one, any such recovery event is followed by a transmission
event. Although the whole population is always infected, every transition between states
is accompanied by an infinitesimally short visit to a state with one uninfected host, and
so the state space of the population is effectively the set of the red dots in Figure 1A.
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5. Evolutionary invasion analysis

5.1. Definitions

Each strain is characterized by its turnover and transmission rates. Since these are
positive numbers, the set of all possible mutants, i.e., the phase space of selection, is the
first quadrant of R2. For a given resident strain, we will refer to the fixation probability
as a function on this phase space as the fixation probability landscape of the resident.

The first question we want to ask is the following: given a resident strain 1, what is the
set of all strains that are favored by selection to invade it? By definition, this set consists
of all strains whose fixation probability is greater than that of strain 1’s neutral mutant.
The conditional fixation probability of a neutral mutant of s1 is equal to 1/(1 + n1).
Therefore, the fixation probability of a neutral mutant is

Fneutral(R1, N) =
N−1∑
n1=0

1

1 + n1

ρn1(R1, N). (9)

The boundary that separates the successful and unsuccessful mutants is given by all
the neutral mutants of the strain 1. We will refer to this boundary as the neutral invasion
curve of the resident. For a fixed a1 and β1, it is defined implicitly in the a2 − β2 plane
by the equation

F (a2, β2; a1, β1, N) = Fneutral(R1, N). (10)

Another question we are concerned with is whether knowing that invasion of strain
2 into strain 1 is favored by selection implies that invasion of strain 1 into strain 2 is
opposed by selection (and vice versa). For a given resident strain 1, the set of mutants
that do not satisfy this property is defined by two boundary curves. One of them is the
neutral invasion curve of strain 1 (corresponding to the premise of the implication), and
the other is a curve of all mutants such that strain 1 is their neutral mutant (corresponding
to the conclusion of the implication). We will refer to this second curve simply as the
second boundary curve, and, for fixed strain 1 parameters, it is defined implicitly in the
a2 − β2 plane by

F (a1, β1; a2, β2, N) = Fneutral(R2, N), (11)

where R2 also depends on β2 and a2.
Throughout the rest of this section we carry out this analysis for several distinct

regions of the model parameters.

5.2. Invasion analysis if Ri > 1 and N →∞
In very large populations, strain 1 spreads to eventually reach a steady state in which

the fraction of infected individuals is equal to 1− 1/R1. Therefore, when strain 2 enters
the population, it sees N/R1 uninfected hosts. Its basic reproductive ratio with respect
to this smaller population is R2/R1, and so it has a non-zero probability of spreading
in this population only if R2 > R1. If satisfied, this probability of spreading is equal
to 1−R1/R2 (derived from the extinction probability for the corresponding birth-death
process, see Kendall (1949); Iwasa et al. (2004)). As the number of individuals infected
with strain 2 increases, strain 1 will be driven to extinction. Therefore, assuming Ri > 1,
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Figure 2: Fixation probability landscapes in the following cases: A. N → ∞; B. N = 10, Ri → ∞; C.
N = 4, Ri →∞. Contour plots show the fixation probability (red = 1, blue = 0) for a strain 2 (β2, a2)
invading strain 1 (β1, a1). The strains to the left of the neutral invasion curve (solid white line) are
favored to invade strain 1 (fixation probability greater than that of a neutral mutant), while the strains
to the right are not. Strains in between the neutral invasion curve and second boundary curve (dashed
white line) are not favored to invade strain 1, but strain 1 is also not favored to invade them. In the
limit N →∞ these two curves coincide, and the strain with larger basic reproductive ratio (Ri = βi/ai)
is always favored for invasion. Note that because of the special parameter dependence of the fixation
probability in either regime Ri →∞ or N →∞, these plots are independent of the choice of the resident
strain.

the fixation probability in this limit is

lim
N→∞

F (a2, β2; a1, β1, N) =

{
0 if R2 < R1

1− R1

R2
if R2 > R1

. (12)

When N → ∞ the fixation probability of a neutral mutant is 0, and so the neutral
invasion curve is simply given by β2 = R1a2. It coincides with the second boundary curve.
If strain 2 is favored to invade strain 1, strain 1 is not favored to invade strain 2. The
relation R1 = R2 divides the phase space into equivalence classes, and two strains can
coexist in a population only if they belong to the same equivalence class, i.e., if they are
neutral mutants of each other. Figure 2A shows a contour plot of the fixation probability
landscape of Eq.(12) together with the (overlapping) neutral invasion curve.

5.3. Invasion analysis if N is finite and Ri →∞
When the population size is finite but the basic reproductive ratio is very large, the

quasi-stationary distibribution for the resident strain is non-zero only for n1 = N . As a
result, the fixation probability of a neutral mutant is 1/N (Eq.(9)), independent of the
resident strain. For other mutants, the fixation probability has a closed form expression
given by Eq.(7).

Figures 2B,C show contour plots of the fixation probability landscape together with
the corresponding neutral invasion and second boundary curves for two different values of
N . Comparing these results with the one in Figure 2A, we can immediately infer several
new features of the evolutionary competition that are not present if the population is
infinite. Firstly, a mutant can be favored to invade a resident even if its basic reproductive
ratio is lower than that of the resident (the neutral invasion curves dips below the diagonal
in Fig. 2B,C; below line resolution in 2B). Therefore, the basic reproductive ratio may
not be maximized by selection in a finite population. We will return to this problem in
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Figure 3: Fixation probability landscape for finite Ri and different population sizes. A. N = 10, R1 = 1.5,
B. N = 5, R1 = 4, C. N = 15, R1 = 5. Contour plots show the fixation probability (red = 1, blue = 0)
for strain 2 (β2, a2) invading strain 1 (β1 = R1, a1 = 1, marked by white +). The strains to the left of
the neutral invasion curve (solid white line) are favored to invade strain 1 (fixation probability greater
than that of a neutral mutant), while the strains to the right are not. Only as population size increases
is the strain with larger basic reproductive ratio (Ri = βi/ai) always favored for invasion. If the neutral
invasion curve is to the right of the second boundary curve (dashed white line), the strains in between
them are favored to invade strain 1, and strain 1 is also favored to invade them (in A, above the +; in
B, between the + and the O). If the neutral invasion curve is to the left of the second boundary curve,
the strains in between them are not favored to invade strain 1, but strain 1 is also not favored to invade
them (In B, above the O, in C; above the +). Note that the range of the axes is not the same in each
plot.

Section 5.4 when we deal with general values of Ri since in that case, this effect has more
profound consequences.

A second emergent effect is that the neutral invasion curve may be located to the left
of the second boundary curve. The region in the phase space bounded by these two curves
consists of all mutants which are not favored to invade strain 1, nor is strain 1 favored to
invade them. This creates a sort of “mutual exclusion” or “status quo” situation between
the strains. The existence of such “mutually excluding” strains also implies that, unlike
in infinite populations, being a neutral mutant of a strain does not define an equivalence
relation on the set of all strains. As a consequence, it is impossible to assign a value to
each strain whose maximization would determine the likely outcome of an invasion in a
finite population.

5.4. Invasion analysis in the case of general N and Ri

5.4.1. Location of the neutral invasion curve and its implications

For general values of the population size and basic reproductive ratio, the fixation
probability landscape must be calculated numerically. Several examples, together with
the corresponding neutral invasion and second boundary curves, are shown in Figure 3.
Unlike in Figure 2 (Ri → ∞), we do not use the normalized turnover and transmission
rates (a2/a1, β2/β1) because the fixation probability is no longer a function of only these
fractions. However, by reparametrizing time in Eq.(1), we can still reduce the number of
relevant parameters by one (usually, this is achieved by setting a1 = 1).

In addition to the conclusions made in Section 5.3, the finiteness of Ri is responsible
for several new features. Firstly, because the mean number of infected individuals in
quasi-stationarity is an increasing function of R0, the fact that invasion of a mutant with
R2 < R1 can be favored by selection also means that selection can favor the invasion
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of a novel strain which is better for the host population. This is in contrast to infinite
populations where a favored invader must have a basic reproductive ratio larger than
that of the resident, and therefore such a selective sweep must necessarily lead to a
higher fraction of infected individuals. The extreme case of this behavior is that, given a
resident strain, there may exist mutants which cannot even infect other individuals (i.e.,
which have β2 = 0), and yet still be favored by selection to invade. This is evident from
the non-zero x-intercepts in Fig.3A and B. This odd behavior occurs if the timescale of
the resident epidemic is sufficiently shorter than the mean turnover time of the mutant.
However, this may not be possible in all scenarios because the mean turnover time has
an upper bound given by 1/u (where u is the natural death rate of hosts).

Secondly, for finite population sizes and finite basic reproductive ratios, selection can
also favor faster times to extinction from quasi-stationarity (Figure 4). This is again an
example of evolution towards strains that are better for the host population.

5.4.2. Mutual invasibility and mutual exclusion

When Ri is finite, Figure 3 demonstrates that there may exist strains that are favored
to invade strain 1, but strain 1 is also favored to invade them (the second boundary curve
is left of the neutral invasion curve). Roughly speaking one can imagine this “mutual
invasibility” situation as follows. When the infection occurs, there is a pressure towards
replacing the old infection in the population. However, when this new infection has
almost completely spread, i.e., there is only one individual infected with the old strain,
the pressure is reversed towards spreading of the old infection again. Although intuitive,
any such classification is complicated in finite populations since the success or failure
of an invasion is probabilistic, and the fixation probability cutoff for being “favored by
selection” is only a definition relative to the neutral mutant.

Using numerical calculations, we can give a qualitative description of the relative po-
sitions of the neutral invasion curve and the second boundary curve, hence characterizing

12



the mutual invasibility properties of different pairs of strains. For simplicity, we will re-
strict ourselves to pairs of strains with Ri > 1. Without loss of generality, we will also
assume that β2 > β1 (mutual invasibility is a symmetric relation, and so invasion behavior
for pairs of strains with β2 < β1 can be inferred by switching the identities of strains 1
and 2). By definition, the neutral invasion curve and the second boundary curve coincide
at the resident strain s1 where they can either cross (Figure 3A), or touch (Figure 3B,C).
In addition to this point of contact, the curves can also cross in the region β2 > β1 (Figure
3B). There is at most one such additional crossing, and its presence depends on the value
of R1. For large values of R1, there is no crossing, and all strains with β2 > β1 in between
the neutral invasion curve and the second boundary curve are such that neither s2 nor s1
are favored to invade the other (“mutual exclusion”, Figure 3C). Lowering R1 beyond a
certain threshold value, a crossing emerges in the region β2 > β1 (Figure 3A (out of plot
range), B). Below this crossing but above the resident, there is a set of strains s2 such
that s2 and s1 are mutually invasible. Above the crossing, mutual exclusion remains.

6. Weak selection limit

In this section we study long-term evolutionary dynamics in the scenario where each
mutation induces only small changes in the strain parameters. This assumption may
be violated in particular biologically-relevent scenarios, such as within-host evolution in
the presence of strain-specific immune responses, where a point mutation may result in
complete immune escape and a large fitness benefit. The ideal framework for studying
evolution in this “weak selection” limit is adaptive dynamics (Geritz et al., 1998; Diek-
mann, 2004), with the fixation probability (Eq.(4)) assuming the role of the invasion
fitness (Proulx and Day, 2002).

6.1. Selection gradient

By definition, the selection gradient points from the resident strain (a, β) to the strain
with the maximal fixation probability in its infinitesimal neighborhood. Formally, it is
given by

~g(a, β,N) = ∇F (a′, β′; a, β,N)|(a′,β′)=(a,β) . (13)

The operator ∇ represents the gradient with respect to the first two coordinates. We are
interested only in the direction of ~g, not its magnitude. The first thing to note is that
this gradient depends only on the parameters of the resident strain and on the population
size. This allowed us to drop the index “1” used to distinguish the resident strains. Also,
as noted before, we can always set a = 1 without any loss of generality. Therefore,
for a given population size, strains with the same basic reproductive ratio have the same
direction of selection.

The vector field of Eq.(13) determines a dynamical system that we will refer to as
selection dynamics. Assuming it is possible, one could integrate ~g(a, β,N) to obtain a local
fitness function. The selection dynamics act to maximize this function. The local fitness
function is not unique but its contour lines are (this is also true in an infinite population
since the transformation R0 → f(R0), where f(x) is a strictly monotone function, will
not change the outcome of selection). These contour lines satisfy the differential equation

dβ(a)

da
= −

∂F (a′,β′;a,β(a),N)
∂a′

∂F (a′,β′;a,β(a),N)
∂β′

∣∣∣∣∣
(a′,β′)=(a,β(a))

. (14)
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Figure 5: Contour lines for the local fitness function of an infectious disease in a finite population. The
direction of selection of a disease strain with parameters a and β is perpendicular to these curves. A.
N = 4. B. N = 10. C. N = 30. The selection gradient is determined by the fixation probabilities of
neighboring strains in the phase space, and the local fitness function is constructed to have a gradient field
pointing in the direction of the selection gradient. The contour lines of this function can be calculated
by numerical solution of Eq.(14). The black line represents the boundary R0 = 1 that separates strains
that can (above line) from those that cannot (below line) infect a significant fraction of the population.

In the special case R0 = β/a → ∞, this equation can be solved analytically. Using
the expression (7) on the right hand side of Eq.(14), we obtain the differential equation

dβ(a)

da
=

(
N − 1

N − 2

)
β(a)

a
. (15)

This equation can be solved to give

β(a) = β1

(
a

a1

)N−1
N−2

, (16)

where we have chosen to describe a contour line that passes through the strain (a1, β1).
One can deduce from the form of these contours that when R0 is very large, a possible
choice for the local fitness function is

R̃0(a, β,N) =
β

a
N−1
N−2

. (17)

As expected, limN→∞ R̃0(a, β,N) = R0.
For strains with generic values of R1, the corresponding contour lines can be solved for

numerically and are more complicated (Figure 5). They do not pass through the origin,
and they are not convex.

For any R0 value, the major difference between the selection dynamics in finite versus
infinite populations can be understood as follows. In an infinite population, any contour
curve passing through a strain with R1 > 1 is just a ray with a slope equal to R1. This
is not true for contour curves passing through strains with R1 < 1. The dynamics of
these strains can only be described by a stochastic model because the number of infected
individuals never reaches macroscopic numbers. The results are that any contour curve
that passes through a strain with R1 < 1 does not pass through the origin, is concave,
and always lies under the β = a line. For finite populations, Figure 5 demonstrates that
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the distinction between strains with R1 < 1 and R1 > 1 no longer exists. Any contour
contains strains with all possible values of the basic reproductive ratio. These numerical
calculations suggest that for any contour there is some ac (Rc) such that the contour is
convex in the region a > ac (or equivalently for strains with R > Rc). The thresholds Rc

seem to be close to but not equal to 1.

6.2. Rate of convergence towards the N →∞ limit

Because the direction of the selection gradient depends only on the basic reproductive
ratio and the population size, it provides a good way to measure the importance of the
“finiteness” of the population. For a resident with a basic reproductive ratio R0 > 1,
we will denote θ(N,R0) the angle between its selection gradient and the a-axis. For
an infinite population, this is simply arctan(1/R0). To estimate the population sizes
for which finite size effects are important, we define the relative difference in selection
pressure as compared to infinite population

δθ(N,R0) =
limN→∞ θ(N,R0)− θ(N,R0)

limN→∞ θ(N,R0)
∈ [0, 1]. (18)

Furthermore, we define the threshold population size Nth(R0) as the population size above
which δθ(N,R0) < 5% (this choice is arbitrary and was chosen simply to characterize the
behavior in regions where an analytic solution is not available). Using Eq.(15), it follows
that

lim
R0→∞

δθ(N,R0) =
1

N − 1
. (19)

Consequently, limR0→∞Nth(R0) = 21. Numerical calculations confirm that the threshold
population size increases with decreasing R0. Based on these results we can conclude
that, in a population of N hosts, the relative deviation of the selection pressure from the
N → ∞ case is at least 1/(N − 1). However, for pathogens with smaller R0, this error
can be significantly larger. In Figure 6 we show the N dependence of δθ(N,R0) together
with the corresponding threshold population sizes for several different values of R0.

6.3. Selection dynamics with a trade-off between the transmission rate and the virulence

In this section we consider the possibility that the virulence (the disease-induced death
rate) and the transmission rate of a strain might not be independent parameters. For
simplicity, we assume no recovery (δi = 0), so that ai = u + vi. We continue to assume
that death is immediately followed by replacement with a susceptible host. The curve
that describes all the allowed combinations of virulence and transmission rates will be
denoted as β(v). The basic condition on β(v) is that it is an increasing function. This
convention follows from an extensive literature on the evolution of virulence (reviewed
in Dieckmann et al. (2002)), and arises from the idea that increasing pathogen numbers
within an individual host can lead to increasing virulence (v) but also lead to an increase
in transmission rate (β).

Considering again the weak selection limit (and hence infinitesimal mutations), the se-
lection dynamics can be described by restricting the local fitness function to the line β(v).
Singular points of the selection dynamics correspond to critical points of the local fitness
function. Geometrically, a strain with virulence v∗ is a singular point if the direction of
selection at v∗ is perpendicular to the curve β(v) at the point v∗. This is equivalent to the
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Figure 6: Dependence of the selection gradient on the population size. The direction of selection
(θ(N,R0)) for an infectious disease in a finite population depends on the population size (N) and the
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tion (θ = 0 corresponds to selection towards lower a). The coefficient δθ(N,R0) is defined as the relative
change in the direction of selection due to the finite size N of the population. The threshold population
size (Nth) is defined as the population size above which δθ(N,R0) < 5%.

condition that the curve β(v) at the point v∗ shares a tangent with the contour curve of
the local fitness function that passes through the strain (v∗, β(v∗)). Stability properties
of the singular points follow from relative curvatures of β(v) and the contour curve (see
Mazancourt and Dieckmann (2004) for a general analysis of this geometrical approach).
A short calculation shows that this is equivalent to a standard second derivative test of
the local fitness function. Therefore, the local attractors of the selection dynamics (also
referred to as convergence stable strategies) correspond to the virulences, v∗, that locally
maximize the local fitness function.

A convergence stable strategy can be either an evolutionarily stable strategy, or an
evolutionary branching point (Geritz et al. (1998)). In the limit of either R0 → ∞ or
N → ∞, mutual invasibility between two neighboring strains is not possible, and so, in
these cases, evolutionary branching is ruled out.

In an infinite population, the convergence stable strategies are simply local maxima
of R0(v) = β(v)/(u + v) (Figure 7A,B; dashed lines). Therefore, taking first and second
derivatives, the necessary conditions for v∗ to be a convergence stable strategy are

β′(v∗) =
β(v∗)

u+ v∗
= R0(v

∗), and β′′(v∗) ≤ 0. (20)

In particular, if β(v) has a positive second derivative, the selection pressure either in-
creases the virulence towards infinity or decreases it towards zero, and there cannot be
any convergence stable strategy with an intermediate v∗. An example is depicted graph-
ically in Figure 7 (compare the concave constraint in A and B, with one attractor for
N →∞, to the convex constraint in C and D, with no attractors for N →∞).

To quantitatively analyze the situation in a finite population, we assume the limit
Ri →∞, and use the local fitness function (17) given by

R̃0(v) =
β(v)

(u+ v)
N−1
N−2

.
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By finding the maxima of R̃0(v), we determine that the necessary conditions for v∗ to be
a convergence stable strategy are

β′(v∗) =
(N − 1)

(N − 2)

β(v∗)

(u+ v∗)
=

(N − 1)

(N − 2)
R0(v

∗), and β′′(v∗) ≤ (N − 1)

(N − 2)2
β(v∗)

(u+ v∗)2
. (21)

This result introduces two interesting conclusions about the evolution of virulence
in finite populations. Firstly, non-zero local attractors can exist even when β(v) has a
positive curvature (is convex) (Figure 7C,D). Geometrically, the inequality in Eq.(21)
means that the second derivative of the constraint β(v) at v∗ must be less than or equal
to the second derivative of the contour curve of the local fitness function passing through
(v∗, β(v∗)). Therefore, a constraint that might continuously increase virulence in an
infinite population can lead to a finite convergence stable virulence in a finite population.

Secondly, for constraints β(v) with negative curvature, where a local attractor already
exists in an infinite population, the location of the attractor changes depending on the
population size. We demonstrate this as follows. Denote v∗ as the local attractor in an
infinite population, i.e., it satisfies the conditions (20). To obtain analytic results, we
assume that N−1

N−2 − 1 = 1
N−2 is small. We also assume that the local attractor v̄∗ in a

finite population is given by a solution of Eq.(21). Since 1
N−2 is small, it is expected

that the new attractor v̄∗ is very close to v∗. Linearizing this equation by making a
Taylor expansion around v∗ on both sides, and keeping only terms linear in v − v∗, we
demonstrate that

v̄∗ = v∗ − β(v∗)
β(v∗)
u+v∗

+ (N − 2)(u+ v∗)|β′′(v∗)|
≈ v∗ − 1

(N − 2)

R0(v
∗)

|β′′(v∗)|
, (22)

where we used the condition β′′(v∗) < 0. Therefore, finite populations shift the conver-
gence stable strategies towards lower virulence. The geometric interpretation of this result
is shown in Figure 7A,B.

The fact that this expectedly small correction is proportional to R0(v
∗), when we

consider R0 to be infinite, is not inconsistent when considering a specific method of
attaining this limit. One can think about theR0 →∞ limit as setting β(v) = cβref(v), and
taking c→∞ (where βref(v) is some finite reference value of the transmission rate). Then,
the rightmost term in Eq.(22) is manifestly finite since it is proportional to β(v∗)/|β′′(v∗)|
which is independent of c. One could also mediate the R0 → ∞ limit by sending the
turnover rate (u + v) to zero. This method is additionally complicated by the fact that
the derivative is taken with respect to virulence, however, by employing the same strategy
and expressing the turnover rate in terms of some finite reference, one can verify that
Eq.(22) is again independent of the scaling factor.

Returning to the case of constraints with positive curvature, we consider what happens
to the attractors as the population size is continually reduced from infinity to small
values. We determine that for certain constraints, after this local attractor appears at
a particular population size, it can then bifurcate into two new local attractors. This
feature is demonstrated in Figure 7E using the convex piecewise linear constraint

β(v) =

{
2.6v if v < 3.786
−5.3 + 4v if v > 3.786

. (23)
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Figure 7: Selection dynamics with a trade-off between the transmission rate and the virulence. In all
figures it is assumed that the baseline death rate u = 1, and that the recovery rate δ = 0. Black diamonds
mark different local attractors. A. The local fitness function (R0, R̃0) versus the virulence, v, for the
constraint β(v) = cv/(1 + v), with c = 10. There is at most one local attractor for a concave constraint.
The convergence stable virulence v∗ shifts to lower values when the population size is decreased from
N =∞ (dashed line) to N = 5 (solid line). B. The convergence stable virulence occurs at the value of v
where the contour line of the local fitness function (blue line) shares a tangent with the constraint β(v)
(green line), so that the direction of selection is perpendicular to the constraint. C. The local fitness

function (R0, R̃0) versus the virulence, v, for the constraint β(v) = cvk, with c = 1.137 and k = 1.2.
There is no convergence stable strategy for N = ∞ (dashed line). When N decreases, a convergence
stable strategy appears (solid line). D. The convergence stable virulence occurs at the value of v where
the contour line of the local fitness function (blue line) is parallel to the constraint β(v) (green line),
so that the direction of selection is perpendicular to the constraint. In finite populations, the point of
contact is a local attractor only if the second derivative of the constraint at this point is less than the one
of the contour. E. The local fitness function (R0, R̃0) versus the virulence, v, for the convex constraint
in Eq.(23). For N = ∞, this constraint does not lead to a finite convergence stable virulence. As
the population size is decreased, a single local attractor emerges, and when the population size reaches
N = 4, this attractor bifurcates into two new local attractors. At N = 3, one of these disappears again.
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While unnecessary for our demonstration, one could smoothen this constraint for example
by replacing the sharp step by a Hill function. If the constraint is concave, there can be
at most one attractor for any population size, and hence no bifurcation occurs.

Although we have analyzed the finite population case using the limit Ri →∞, based
on the shape of the contour curves (see Figure 5), we expect similar behavior in the
general case as well. However, because mutual invasibility is possible for certain strains,
some local attractors might turn out to be evolutionary branching points.

7. Alternative definitions

7.1. Alternative initial conditions

The fixation probability of a mutant is dependent upon the choice of the initial con-
dition for Eq.(1). Throughout the paper, we made the choice (3) that a novel strain was
introduced into the population by a process that converted an individual infected with a
resident strain to one infected with a mutant strain. Population size is preserved in this
process, and it corresponds to conventions used in evolutionary invasion analysis. An ex-
ample of a different but equally important initial condition is described by the following
scenario. The resident infection s1 has reached quasi-stationarity in a population of N−1
hosts, and then an individual infected with a novel strain s2 migrates to the population.
Since the per contact transmission rate of the resident in a population of N individuals is
β1/N , its transmission rate in a population of N − 1 individuals is β1(N − 1)/N . There-
fore, in this scenario, the probability that initially there are n1 individuals infected with
the resident strain is

ρ′n1
(R1, N) ≡ Qn1

(
R1
N − 1

N
,N − 1

)
, n1 ∈ {1, . . . , N − 1} . (24)

Luckily, there are no qualitative differences in the behavior if one decides to use this
initial condition instead of the standard one. In particular, in the limit Ri → ∞, both
initial conditions reduce to the same distribution. This is not surprising. The initial
condition with N−1 individuals infected with the resident and 1 individual infected with
the mutant is the only meaningful choice when the limit Ri → ∞ is assumed because
any non-infected individual must be immediately infected. That this limit eliminates
the ambiguity in the choice of the initial condition is an important fact that further
strengthens the view of the large Ri limit as an ideal indicator of the stochastic effects.

7.2. Alternative invasion conditions

Throughout this paper we have been using a definition of neutrality based on the
fixation probability of a mutant that is indistinguishable from the resident. While this
definition has a clear biological interpretation, it is definitely not the only possible choice.
A different choice could be based on a comparison of times the population spends infected
with strains 1 and 2 if mutations between the strains occur at some rate u, and the
timescale of mutation is much larger than the timescale of invasion. We could say that
the strains are neutral mutants of each other if these times are equal. In the limit Ri →∞,
the total mutation rate of a population is strain-independent because every individual is
always infected, and hence is a source of a possible mutation. This allows us to conclude
that the times the population spends infected with each disease are equal if and only if
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the fixation probability of strain 1 invading strain 2 is the same as the fixation probability
of the reverse process. Using Eq.(7), this happens if and only if

βN−22

aN−12

=
βN−21

aN−11

. (25)

Therefore, at least in the large Ri limit, the “invasion curves” corresponding to this
alternative definition of neutrality would coincide with the contour curves of the weak
selection limit. In particular, neutrality would define an equivalence relation, and we
would not need to worry about the existence of pairs of strains mutually not favored to
invade each other. Although this is a nice property for a neutrality definition to satisfy,
we believe that our original approach is more fundamental, hence we do not pursue this
alternative any further.

8. Discussion

We have analyzed the competition for hosts between two pathogen strains, each of
them obeying the dynamics of a stochastic SIS model. We examined whether invasion of
a mutant strain into a resident strain at endemic equilibrium is favored by selection, by
comparing its fixation probability to that of a neutral mutant. This is one of the simplest
models of evolutionary competition of infectious diseases, and yet, our results violate the
standard rule of R0 maximization observed for this same model in infinite populations.
We find that strains with R0 values lower than the resident strain can be favored to
invade. In fact, we show that in finite populations, there exist pairs of strains such that
neither of them is favored by selection to invade the other (“mutual exclusion”), or that
both are favored to invade the other (“mutual invasibility”). This implies that invasion of
new pathogens in finite populations cannot be described simply by comparing R0 values
(or values of any other function) of each strain.

Since, for any strain, one can find a mutant with a smaller R0 value that is favored
to invade, evolution can lead to a healthier host population. This effect is impossible in
infinite populations for simple SIS models. Though related, these results are not a simple
consequence of the dependence of the number of secondary infections on population size
(Ross, 2011), but depend on longer-term behavior associated with disease competition.

If we restrict our analysis to mutants whose parameters are infinitesimally close to
those of the resident, the situation simplifies considerably. In this weak selection limit,
we can locally define a fitness function that is maximized by selection. In the limit

of R0 → ∞, this local fitness function is equal to R̃0(a, β,N) = R0

(
1
a

) 1
N−2 (Eq.(17)).

Although the assumption R0 → ∞ is not applicable to most pathogens, understanding
it is important for three reasons. First, the results in this limit are independent of the
choice of the initial condition. Second, it provides a bound for the behavior in the case
of general R0. Specifically, in a finite population of N hosts, the relative deviation of the
selection pressure from the one given by R0 maximization (δθ(N,R0)) is at least 1

N−1 .
Third, the form of the results is very simple, and as such it is useful for a qualitative
understanding of the effects of finite populations. If one studies a model based on R0

maximization, and is interested in what happens when the population size is reduced,
replacement of R0 with R̃0 should provide a first insight into the stochastic behavior.

The interpretation of the form of R̃0 is simple. The smaller the population size, the
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more important it is to have a large turnover time rather than a large transmission rate.
This is in opposition to infinite populations, where there is a symmetry between these
two attributes, and both are equally important. That turnover time matters more in
small populations is also demonstrated by the result that, when the transmission rate
depends on the virulence, lowering the population size also lowers the evolutionarily
stable virulence. Intuitively, slower turnover (longer lifespan, lower recovery rate, or
lower virulence) is more important than a higher transmission rate in small populations
because it allows a strain to beat a competitor not only by infecting more individuals,
but - because stochastic extinction is inevitable - by “waiting it out.”

A natural generalization of our model is to consider a finite but spatially-structured
population. This will be the focus of future work, but intuition suggests that any non-
trivial geometry should manifest itself in the exponent in Eq.(17) for the R0 →∞ limit.
This in turn would have an effect on the lower bound of the relative deviation from R0

maximization. The ultimate question is whether for certain population structures this
lower bound fails to approach zero as the population size goes to infinity. For example,
if one imagines a very large population that consists of many small weakly interacting
subpopulations, it is intuitive that some of the features of the small populations should
be relevant on the macroscopic scale. Whether and under what conditions this is true
still needs to be investigated. A large body of related work has used SIR-type models
to study the evolution of virulence in particular types of structured populations (for
example, Boots and Sasaki (1999); Haraguchi and Sasaki (2000); Boots et al. (2004);
Webb et al. (2013), reviewed in Messinger and Ostling (2009)).

Another necessary step is to incorporate the possibility of continual mutations into
the model. Only by studying the resulting mutation-selection balance can one study
disease evolution on more general timescales and relate the model to empirical data.

Finally, there is an interesting similarity between our model in the regime Ri →∞ and
the Moran process with frequency-dependent selection (Nowak et al., 2004). Both models
assume a population of N hosts. In the Moran process, every individual carries one of two
alleles A or B. In the limit Ri → ∞ of our model, every individual is infected with one
of two strains s1 or s2. In the Moran process, every event consists of choosing a random
individual for death, and a random individual for reproduction. In our model, every
event consists of choosing a random individual for a recovery (or death), and a random
individual for infecting the newly recovered host. There are, however, two important
differences. First, in the Moran process, all individuals have the same probability of
dying. This is not so in our model, where the probability of being chosen for recovery
depends on ai. Second, in the Moran process, the events of choosing an individual for
death and choosing an individual for reproduction are independent. In our model, the
event of choosing an individual who will infect the newly recovered host depends on
whether it was an individual infected with s1 or s2 who recovered. This second difference
is the reason the limit Ri → ∞ of our model cannot be mapped on a standard Moran
process with frequency-dependent selection.
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Appendix A. Fixation probability for residents and mutants with large basic
reproductive ratios

Appendix A.1. Quasi-stationary distribution for large basic reproductive ratio

As a first step towards calculating the fixation probability, we need an expression for
the quasi-stationary distribution (2). In the region of large R1, it behaves as (Ovaskainen,
2001)

Qn1(R1, N) =


1− N2

(N−1)
1
R1

+O
(

1
R2

1

)
if n1 = N

N2

(N−1)
1
R1

+O
(

1
R2

1

)
if n1 = N − 1

O
(

1
R2

1

)
if n1 < N − 1

, (A.1)

Looking at the transition probabilities of the single-disease SIS model (i.e., setting n2 = 0
in Eq.(5)), one can gain an intuitive insight into this result. The condition of large
R1 means that the probability of infecting an uninfected host is much larger than the
probability that an infected individual recovers (or dies). Therefore, the population soon
reaches a state where all individuals are infected. Every once in a while, an individual
is recovered. This happens at a rate Na1. However, this newly recovered host is quickly
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reinfected with the rate β1(N − 1)/N . If we observe the system for a long time, the
fraction of time it spends in the state n1 = N − 1 is

1
β1
N

(N−1)
1

Na1
+ 1

β1
N

(N−1)

≈ N2

(N − 1)

1

R1

, (A.2)

which, assuming ergodicity, can be identified with the probability of being in the state
n1 = N − 1, explaining the expression (A.1). Furthermore, this reasoning is valid only if

P(n1 → n1 + 1)� P(n1 → n1 − 1) ∀n1 ∈ {1, . . . , N − 1}. (A.3)

This is equivalent to R1 � N , giving us a more useful description of the region of validity
of the approximation (A.1).

Appendix A.2. Derivation of the fixation probability in the Ri →∞ limit

Using a similar reasoning as in the case of only one strain present, most of the time
every host in the population will be infected. Occasionally, an individual recovers, how-
ever, it is quickly reinfected with either one of the two strains. Therefore, in the region
of large Ri, the state of the population is constrained to the red dots shown in Figure 1A
. More precisely, if we want this to be true, the transition probabilities from states with
n1 + n2 = N − 1 must satisfy

P([n1, n2]→ [n1 + 1, n2])� P([n1, n2]→ [n1 − 1, n2]),

P([n1, n2]→ [n1 + 1, n2])� P([n1, n2]→ [n1, n2 − 1]),

P([n1, n2]→ [n1, n2 + 1])� P([n1, n2]→ [n1 − 1, n2]),

P([n1, n2]→ [n1, n2 + 1])� P([n1, n2]→ [n1, n2 − 1]),

(A.4)

which is equivalent to

R1 � N, R1 �
a2
a1
N(N − 2),

R2 � N, R2 �
a1
a2
N(N − 2).

(A.5)

Note that this is a much more stringent condition than Ri > N .
Assuming the conditions (A.5) are satisfied, the original process reduces to a Markov

chain on a one-dimensional lattice with 2N−1 states (the red dots in Figure 1A). We will
assign the number i = 0 to the state [n1 = N − 1, n2 = 0], i = 1 to [n1 = N − 1, n2 = 1],
i = 2 to [n1 = N−2, n2 = 1] and so on until i = 2(N−1) is assigned to [n1 = 0, n2 = N−1].
The states i = 0 and i = 2(N − 1) are absorbing at n2 = 0 and n1 = 0 respectively. It
follows from Eq.(5) that the jump probabilities are

P(i→ i+ 1) =
a1
(
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2

)
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2

)
+ a2
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2

,
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)
+ a2

i+1
2

,

 if i is odd (A.6)
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.

 if i is even (A.7)
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In the limit of R1 →∞, the initial condition (3) is non-zero only for n1 = N −1. The
fixation probability is equal to the conditional fixation probability FN−1(a2, β2; a1, β1, N),
which is the same as the probability of absorption at i = 2(N −1) starting from the state
i = 1. Note that the jump probabilities, and therefore also the absorption probabilities,
depend only on the ratios a2/a1 and β2/β1. Probabilities of absorption from any state
satisfy solvable recurrence equations that yield

FN−1(a2, β2; a1, β1, N) =
1

1 +
∑2N−3
k=1

∏k
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a1
(N − 1)

) . (A.8)

Calculating the conditional fixation probability starting at n1 = N − 2, n2 = 1,

FN−2(a2, β2; a1, β1, N) =

(
1 +
P(1→ 0)

P(1→ 2)

)
FN−1(a2, β2; a1, β1, N), (A.9)

one could also take into account the 1/R1 corrections in Eq.(A.1). Using Eq.(4), we find
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In addition to higher order terms, the O
(

1
Ri

)
correction also contains 1/Ri terms that

come from a possible jump to the states on the n1 + n2 = N − 2 diagonal in the state
space. We do not evaluate these corrections since, for our purposes, the most interesting
case is when Ri →∞. Then, the fixation probability is simply

lim
Ri→∞
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